
Peer–to–Peer Process Execution with Osiris

Christoph Schuler1, Roger Weber1, Heiko Schuldt2, and Hans-J. Schek1

1 Swiss Federal Institute of Technology (ETH),
CH–8092 Zurich, Email: {schuler,weber,schek}@inf.ethz.ch

2 University for Health Informatics and Technology Tyrol (UMIT),
A-6020 Innsbruck, Email: heiko.schuldt@umit.at

Abstract. Standards like SOAP, WSDL, and UDDI facilitate the prolif-
eration of services. Based on these technologies, processes are a means to
combine services to applications and to provide new value-added services.
For large information systems, a centralized process engine is no longer
appropriate due to limited scalability. Instead, in this paper, we pro-
pose a distributed and decentralized process engine that routes process
instances directly from one node to the next ones. Such a Peer-to-Peer
Process Execution (P3E) promises good scalability characteristics since
it is able to dynamically balance the load of processes and services among
all available service providers. Therefore, navigation costs only accumu-
late on nodes that are directly involved in the execution. However, this re-
quires sophisticated strategies for the replication of meta information for
P3E. Especially, replication mechanisms should avoid frequent accesses
to global information repositories. In our system called Osiris (Open
Service Infrastructure for Reliable and Integrated Process Support), we
deploy a clever publish/subscribe based replication scheme together with
freshness predicates to significantly reduce replication costs. This way,
OSIRIS can support process-based applications in a dynamically evolv-
ing system without limiting scalability and correctness. First experiments
have shown very promising results with respect to scalability.

1 Introduction

Modern technologies like XML, SOAP, and WSDL provide a simple yet power-
ful means to publish information services and to access services. The platform
independent definitions of these technologies further simplify the composition of
services to offer new value added services [5]. One way to achieve this goal is
to define transactional processes [20] over web services. Such processes compose
web service calls in an application-specific invocation order –by defining control
and data flow– together with transactional guarantees. Each activity of a process
corresponds to the invocation of a (web) service. Programming using processes
is referred to as “programming in the large” or “mega programming” [24]. Es-
sentially, processes are again (higher-level) web services, i.e., they are accessible
via SOAP (Simple Object Access Protocol) [21] and described by a WSDL (Web
Service Description Language) [26] document such that other users can easily
integrate them into even larger processes.

Processes impose several vital requirements to the underlying infrastructure.
In terms of failure handling, the traditional “all-or-nothing” semantics of atom-
icity is too restrictive and should be generalized. Process specification must allow
for several contingency strategies to handle failures at the application level. Es-
sentially, it is the task of an infrastructure to guarantee correctness even in
case of network or software failures. Although not all applications require con-
currency control, an infrastructure should be able to coordinate the access to
shared resources in case it is needed.

Usually, several semantically equivalent web services are available at differ-
ent places. An infrastructure for processes must be able to equally distribute
the load over all web service providers. Similarly, we want to optimize process
executions by taking costs and expected execution times. To this end, the in-
frastructure should bind services dynamically at execution time rather than at
process definition time. This decoupling provides a high degree of flexibility since
new providers and services are seamlessly integrated (following the ideas of au-
tonomic computing [25]).

Finally, the system has to provide a high degree of scalability in terms of the
number of service providers and the number of concurrent processes.

1.1 Survey of Existing Infrastructures

Recently, various frameworks supporting the invocation of web services have
been proposed. Microsoft’s .NET [14], for example, allows to integrate web ser-
vice calls into applications. However, since each web service call is considered
independently, .NET does not provide execution guarantees for complete appli-
cations. Moreover, application developers must link services at build-time and
there is no support for dynamic service selection at run-time. Therefore, the task
of balancing the load among all available service providers is shifted from the
infrastructure to the applications.

Workflow management systems are the traditional infrastructures for pro-
cess support. Systems like IBM’s MQSeries Workflow [13] support the integra-
tion of web service calls into workflow processes. Usually, these systems offer
well-engineered execution guarantees, especially in terms of failure handling.
However, they lack a flexible binding of service calls at run-time and, thus, are
not able to optimally distribute the overall load among all service providers
at run-time. Since these systems follow a centralized architecture consisting of
dedicated workflow engine(s), their scalability is limited.

In contrast, grid infrastructures [7] offer optimal support for load balancing.
Essentially, the infrastructure maintains the available resources of a grid and
assigns tasks to the least loaded nodes. In addition, it is even possible to install
new services in the grid in case a bottleneck is detected. However, these systems
lack a sophisticated support for combining several service calls into processes.
This is because they act more like a UDDI repository (Uniform Description and
Discovery Interface) [1] focusing on optimal routing of service requests.

1.2 Osiris at a Glance

In this paper, we describe an new architecture for distributed and decentral-
ized process management system. Osiris, short for Open Service Infrastructure
for Reliable and Integrated process Support, combines the benefits of several
existing infrastructures, namely: i.) discovery and invocation of web services
from frameworks like .NET, ii.) process support and execution guarantees from
workflow management systems, iii.) late binding of service calls and load bal-
ancing from grid infrastructures, and, finally, iv.) Peer-to-Peer Processes Execu-
tion (P3E) in analogy to peer-to-peer file systems. An interesting characteristic
of P3E in Osiris is that process navigation costs only accumulate on nodes of the
community that are directly involved in the execution of a process. Especially,
there is no central component in charge with process execution. Therefore, and
in contrast to a centralized process engine, P3E bears the potential to scale well
with the number of concurrent processes and the number of service providers.
First experiments based on the Osiris system verify this behavior.

To enable P3E, nodes require global meta information about service providers
and the load of their hosts. The approach of Osiris is to maintain meta infor-
mation in global repositories, and to distribute the information to the nodes.
Thereby, replication of meta information runs completely independent of pro-
cess execution, i.e., P3E always considers only local replicas of meta informa-
tion. To reduce the amount of update messages in the system, nodes subscribe
only for parts of the meta information. If meta data changes, only nodes hav-
ing subscribed for this piece of information receive an update (publish/subscribe
replication). Moreover, we relax the freshness of local replicas. For instance,
nodes require load information to balance the load of service requests among all
available providers. Since load information is highly dynamic, consistent repli-
cation would be very expensive. Consequently, Osiris only guarantees that the
nodes’ local copies of a piece of global meta information fulfill some freshness
constraints (i.e., the difference to the correct load value never exceeds 10%).

The focus of this paper is on the presentation of the main concepts of Osiris
and the verification of its high scalability capabilities by first performance eval-
uations. The latter very well supports our belief that the shift from centralized
process management to decentralized solutions will boost large scale informa-
tion systems. Especially, P3E has the potential to scale well with the number of
concurrent processes and the number of nodes connected to the community.

1.3 Organization

The remainder of this paper describes our approach in more detail. Section 2
and 3 describe the basic concepts and the implementation of Osiris, respectively.
In section 4, we present fist results of a performance evaluation on the basis of
the Osiris system. Section 5 summarizes related work, and Section 6 concludes.

2 Peer–to–peer Process Execution

In this section, we first shortly describe the hyperdatabase concept which is the
basis for the infrastructure we have built. Then, we present the Osiris system
as an implementation of a hyperdatabase in more detail.

2.1 The Hyperdatabase Concept

In short, a hyperdatabase (HDB) [17, 16, 18] provides transactional guarantees
for processes over distributed components using existing services. The HDB pro-
vides sophisticated routing strategies to dynamically choose among the avail-
able providers. And finally, a hyperdatabase does not follow a monolithic system
architecture but consists of an additional thin software layer, a so-called hy-
perdatabase layer (HDB layer). The HDB layer resides on every node of the
community and extends existing layers like the TCP/IP stack with process re-
lated functionality. In terms of routing of requests, a service is called by only
specifying its type. The HDB layer then maps the service type to a real net-
work address taking the list of available service providers and the current load
of their hosts into account. As such, the HDB layer abstracts from service rout-
ing much like TCP/IP abstracts from data packet routing. Moreover, while the
TCP/IP protocol guarantees correct transfer of bytes, the HDB layer guarantees
the correct shipment of process instances.

Of course, a hyperdatabase requires that each service provider locally installs
an additional software layer. Ideally, this layer comes together with the operating
system much like the TCP/IP stack does (comparable to the .NET framework).
For the time being, the community of service providers is split into two parts:
on the hand side, there are providers that cooperate and have the HDB layer
installed on their hosts. On the other hand side, we can incorporate external
providers via proxy components. A proxy runs the HDB layer and forwards all
service invocations to an appropriate external provider. Hence, providers can
join the community even without installing the HDB layer.

2.2 Architecture of Osiris

The architecture of Osiris consists of two parts: firstly, each node runs an HDB
layer that is responsible for the execution of processes, routing of service requests,
and failure handling. The main emphasis of our design was to avoid any central
component for process navigation. Rather, the execution of a process instance
involves only nodes that provide a service for that process (see the process flow in
Figure 1). To do so, each HDB layer requires global meta information, e.g., about
service providers and their current load. This leads to the second part of our
architecture: additional global repositories maintain the global meta information
about the nodes in the community (cf. middle box in Figure 1). Each HDB layer
contains replica of those pieces of meta information it needs to fulfill its tasks.

H
D

B Layer

Services &
 D

ata

HDB Layer

Services & Data

HDB Layer

Services & Data

H
D

B
La

ye
r

Se
rv

ic
es

 &
 D

at
a

Process
Repository (PR)

Load
Repository (LR)

Subscription
Repository

(SR)

ü ü
ü

ü ü
ü

ü
Service

Repository (SR)

Fig. 1. Peer–to–peer process execution

It is important to distinguish between the task of process execution and the
tasks of meta data replication. Process execution in Osiris follows a true peer-
to-peer approach touching only nodes that provide a service for the process,
and accessing meta information only locally. Meta data replication, on the other
hand, is based on a hierarchical organization with central repositories (but dis-
tributed over a set of nodes), and clients (= HDB layers) replicating from them.
Process execution and meta data replication run independent of each other.

Subscription Information. Usually, several providers offer semantically
equivalent services. To simplify the discovery of services, Osiris deploys a pub-
lish and subscribe (pub/sub) mechanism for service invocations: a service provider
subscribes for the execution of its services at a global service repository (similar
to a UDDI repository). If a client requests a service, it publishes this request
with the service type as the topic, and the HDB layer selects and invokes one of
the available services. In Osiris, this means that a process instance is migrated
by publishing the instance data with the service topics of subsequent steps. Of
course, there is no central pub/sub component routing publications. Rather,
each HDB layer holds local replicas of the global subscription lists and migrates
process instances in a peer-to-peer way, i.e., plays the role of a pub/sub broker .

Required Process Information. A service invocation may lead to two
result states: success or failure. In case of a success, the current execution path
is followed. Otherwise, an alternative path is executed, possibly compensating
some of the previous activities (partial roll back). Note that alternatives and
compensation are implemented as additional execution paths in the process.

With P3E, an HDB layer requires only minimal information about the process
definitions, i.e., how to call the local service and whom to publish the instance
data to depending on the result state.

Join Node. During the execution of process instances, the termination of a
process activity might trigger an arbitrary number of succeeding activities. This
is usually termed as a fork of the process execution. In a distributed environment
like Osiris, this enables a true intra-parallel execution of a process instance. A
fork is usually accompanied by a join, i.e., a step where a number of execution
paths are merged. A join requires that the nodes along all the merged execution
paths know where to join with which paths. To this end, Osiris assigns a unique
join node to a process instance at its creation time. Whenever a join is required,
the execution paths meet at this node before they continue their path together.
Since a join in Osiris is modeled as an additional activity call, a join typically
will not occur at a provider node. Moreover, Osiris can have an arbitrary number
of different dedicated join nodes, i.e., different process instances have (possibly)
different join nodes.

Load Information. Typically, a service is offered by different providers
possibly with conditions (e.g., service costs) that may change over time. There-
fore, the HDB layer selects services at runtime to optimize the throughput and
response times of processes. As a consequence, the HDB layers require load in-
formation about nodes offering those service types that potentially may receive
process instance data from this HDB layer.

2.3 Replication Management

So far, we did not yet address how global meta information is distributed among
the nodes of the Osiris system. Obviously, we have to avoid that nodes request
information from a central repository each time the information is needed. On the
other hand, full and consistent replication may be too costly, e.g., the distribution
of load information in a peer-to-peer manner would lead to O(n2) messages for
n components. Our solution exploits the following characteristics:

– Updates on certain pieces of information are infrequent, e.g., process defini-
tions or subscription lists of service providers.

– Nodes only require parts of the global information, e.g., only information
about processes that may run at the node.

– Changes on the global information are not always critical, e.g., if the load of
a node slightly changes, its new load does not need to be published.

Pub/Sub Replication. The basic idea of our replication scheme is based
on publish/subscribe techniques: the primary copy of the data resides at a single
node, i.e., a global repository. Osiris stores such information in a semi-structured
representation (an XML document). Then, each client that wants to replicate
data first has to subscribe for the document. As a result of this subscription,
the repository publishes the current state of the XML document. Whenever the
primary copy changes, the repository publishes corresponding update messages

to all subscribed clients. Such an update message comprises only the minimal
information needed to update the clients versions to the current state.

Partial Replication. Replicating the entire XML document is not optimal
if clients only require small pieces of the document. For instance, the HDB
layer does not need the entire process definition to execute the current step
of an instance. Another example comprises subscription information and load
information: consider a large process with a service B immediately following a
service A along one of the execution paths. A node running service A only must
know about providers and load data of nodes running service B, but not about
those offering other services for that process. In general, the HDB layer only
requires a small subset of the global information. Hence, instead of subscribing
for the entire XML document, a node subscribes only for a portion of it by
passing an XPath expression with the subscription.

Freshness Predicates. Replication often demands that the primary copy
and all replicas are consistent, i.e., they contain the same data. For some global
information, this requirement is vital (e.g., process definitions). For other pieces
of global meta information like subscription lists and load information, this re-
quirement is far too strong. Consider for instance subscription lists: as long as
the replicated version is sufficiently close to the primary copy, the HDB layer
is still able to route process instances appropriately. Another example is load
information: if the load of a service only marginally changes, we do not have
to propagate these updates to all clients. Our generic approach allows to add a
so-called freshness predicates to the subscription. These predicates define under
what circumstances changes on the primary copy have to be published.

3 The Prototype System

In addition to the two components of hyperdatabases for process support, i.e.,
the hyperdatabase layer that is installed on every node of the community and
core services that globally provide basic functionality required for the process
management, the Osiris prototype also consists of O’Grape (Osiris GRAph-
ical Process Editor) [22], an additional tool to graphically model and define
processes. Osiris has been implemented over the past two years and is currently
being applied to support process executions in the context of a virtual campus
and a large scale image retrieval engine. In order to give a rough impression of
the complexity of Osiris, the basic infrastructure together with services for the
two applications consists of about 300’000 lines of code.

3.1 The Hyperdatabase layer

The local hyperdatabase layer. consists of number of plug-able modules, i.e., we
can adapt the system to the needs of the application. For instance, if concurrency
control is not important (non-critical application or no conflicts between service
invocations), we may omit the module from the local software layer. In the
following, we concentrate on the description of the most interesting modules:

HDB Layer

Services & Data ... Service
Providers

HDB Layer

Services & Data

HDB Layer

Services & Data

HDB Layer

Services & Data

H
D

B
Layers

Process
Repository (PR)

Load
Repository (LR)

Subscription
Repository

(SR)

ü ü
ü

ü ü
ü

ü
G

lobal O
SIRIS Repositories

Service
Repository (SeR)

Fig. 2. Osiris architecture overview

– Replication Manager. This module provides the basic replication services
as described in Section 2.3. The replication manager may take the roles of
both server and client, i.e., it replicates information from remote sources and
it maintains information for remote clients.

– Process Manager. Whenever a process instance enters the HDB layer,
the process manager requests the corresponding process definition from the
replication manager, and calls the specified service locally. After a service
call, the process manager determines the services to be called next. For each
service, it migrates the process instance to a suitable service provider for
subsequent steps via the communication module. Since process definition is
replicated at HDB layer, a process instance consists of a reference to the
process definition, the name of the current activity, and all global process
instance data.

– Communication. The communication module resolves pub/sub addressing
and deploys the load balancing module to determine an optimal provider
among the list of subscribed nodes. Communication is message-based and
asynchronous. The transfer of a message between two nodes is based on
a 2PC protocol over persistent queues3. Since the number of messages is
typically quite large, we use priority queues to boost important messages.

– Publish Subscribe Routing. The implementation of the pub/sub mod-
ule is rather simple due to the deployment of the replication manager. The

3 Note that there are only two participants in this distributed transaction. Hence, the
protocol is rather simple.

pub/sub module replicates subscription lists from the global Subscription
Repository. To resolve a pub/sub address, it simply returns the list corre-
sponding to the topic.

– Load Balancing. In our implementation, the load balancer chooses the
provider that is able to work off the next execution unit at the earliest
point in time4. For that purpose, the Load Balancing module replicates data
from the global Load Repository via the Replication Manager. Since load
information is not so critical, we use less strict freshness predicates as in the
case of the pub/sub module and the Process Manager.

– Service Manager. The service module builds a bridge between the Osiris
system and the local service providers. At startup time, the service manager
registers all local services at the global Subscription Repository. If needed,
the service manager may download new releases of service software from the
Service Repository. Furthermore, the service manager keeps track of the load
of all local services and publishes this information to global load repositories.

– Concurrency Control. The task of this module is to provide functionality
for globally synchronizing process instances. This is needed in cases where
concurrent process instances access shared resources and if there is a flow
of information between these instances. Unlike many workflow management
systems where this task is delegated to the applications, Osiris makes con-
currency control transparent to the processes.

3.2 Core Services

The core services of Osiris are essential to run process in a peer-to-peer man-
ner. Four core services maintain global repositories from which the HDB layer
replicate. A further service is dedicated to concurrency control. In addition to
these core services, our current prototype runs more than 100 application-specific
services, mainly to support image retrieval and the virtual campus application.

– Subscription Repository (Sr) manages a list of all services offered by the
providers in the Osiris–community. This service is comparable to a name
server in a common TCP/IP network infrastructure. Note that, in contrast to
related pub/sub approaches, the subscription repository provides no routing
functionality. Rather, each local component routes process instances in a
peer-to-peer manner to the targeting system.

– Service Repository (Ser) holds the interface definitions for all services
available in the system. In addition, it holds executables (software) for a
subset of services to support on demand installation of hot-spot services.
If the load of a service type becomes large, Osiris can decide to install
additional instances of this service type to enhance throughput.

4 It is simple to extend this notion with more complex costs functions. For that pur-
pose, we can exchange the load balancing module with a more sophisticated one.

– Process Repository (Pr) holds the global definitions of all processes of the
community. This service decomposes process definition to execution units 5

consisting of pairs of subsequent activities.
– Load Repository (Lr) organizes and manages the load of service providers

in the system. Significant changes in queue status of providers are propagated
to corresponding components.

– Concurrency Control (Cc) When a request for the invocation of a service
is sent to the local HDB layer, it is forwarded to a global concurrency control
service. There, correct synchronization is guaranteed by applying protocols
at the process level [19]. However, an important optimization is done at the
local HDB layer: before forwarding a request to the global Cc service, it is
first checked whether this invocation may have side-effects on other service
invocations (i.e., whether potential conflicts exist). This dramatically reduces
the overhead of concurrency control as it is commonly observed that conflicts
at the level of service invocations are rather rare.

Note that the repositories do not require a centralized implementation. For in-
stance, Osiris can contain a large number of process repositories. These reposi-
tories may exchange and coordinate their contents, and may serve as a repository
for a limited number of nodes. If the number of nodes increase, we simply can
add more repositories. To decrease the load on the other repositories, we may
partition the communities into disjunctive sets of nodes. For each partition, a
dedicated subscription, service and load repository is available. From time to
time, these repositories exchange information and publish changes of remote
partitions to the members of their own partition.

3.3 Failure Handling

Osiris handles failures at various levels. Firstly, network failures might occur
when a node of the community is currently not available. If the address was
determined from a subscription list, we choose an alternative address from that
list (via load balancing) and continue with invoking the new service instance. If
no alternatives exist or all alternatives fail, we suspend the message until new
entries for the list arrive from the replication module.

Software failures denote that a service or the local HDB layer fails. If a ser-
vice crashes, the local HDB layer immediately restarts the failed service and
re-submits the requests the service was handling at the point in time of its fail-
ure (we do so with persistent queues). If the local HDB layer crashes (or the
host on which it is running), the user (a watchdog or a reboot) must restart the
software. Osiris then recovers by consulting the content of the local persistent
queue and logging tables, subscribes all local services at the subscription repos-
itory, and re-starts the processing of the queue entries from their last persistent
5 An execution unit is a part of a global process definition that holds all information

needed to handle activity data flow, call a local service. In addition, preprocessed
information about next activities are needed to determine the subsequent service
calls.

Process Management System

(a) Central Setup

Process
Repository (PR)

Load
Repository (LR)

Subscription
Repository

(SR)

ü ü
ü

üü
ü

ü

(b) Distributed Setup (Osiris)

Fig. 3. System configuration settings in performance evaluations

state. Moreover, the HDB layer must check the state of message transfers at time
of the crash. Depending on the log information from the 2PC protocol, messages
are re-sent or locally removed.

Finally, Osiris also deals with application failures, i.e., a service request
results in an error. However, Osiris can not handle this case of failures auto-
matically. Rather, the application developer must resolve such failures at process
definition time. For that purpose, our process model provides alternative paths
that are followed if a service fails, and compensation steps and roll back steps
which are executed to undo former side effects of a service invocation. Essen-
tially, the application developer is responsible for a correct failure handling at
the application level. If correctly done, Osiris guarantees that a process will
terminate in a well defined state even in case of lower-level failures.

4 Measurements

In this section, we provide the results of first performance evaluations based on
the Osiris system. The goal of these evaluations is to verify the high poten-
tial of the P3E paradigm compared to a traditional centralized process engine,
especially in terms of scalability.

4.1 Measurements Setup

We consider process execution on top of a set of distributed services. These
services are installed on several provider nodes. The goal is to set up a simple
configuration in order to measure the scalability of the navigation concept of
Osiris. Figure 3(a) shows the centralized configuration. A dedicated process
management node calls services of distributed service providers in a traditional
request/reply style. This system configuration represents a state-of-the art pro-
cess management system executing (web) service-based processes. Both process

navigation and meta data management takes place at a central node. In contrast
to this, Figure 3(b) shows a typical setup of Osiris’ peer-to-peer-based process
execution. Process instances are navigated and routed directly at the provider
nodes. Meta data is managed by a set of global services, which are not bound
to a single node and which operate in an asynchronous and decoupled way.

On the basis of these two configuration settings, we want to show the impact
of distributing navigation costs. To clearly factor out the effects, we use for both
settings exactly the same process definitions and the same transport infrastruc-
ture. To achieve this, we have additionally implemented a central coordinator
which meets these constraints.

4.2 Preliminary Results

In the following, we illustrate preliminary experiments to measure the pure navi-
gation costs of process instances. For that purpose, we have used a process (con-
sisting of three activities, i.e., three different service invocations) with no actual
payload, i.e., the service calls just return after invocation. This way, it possible
to only measure the overhead of process management. In addition to the cen-
tralized and distributed execution scheme, our experiments further consider two
different service binding paradigms. In the first setting (denoted as 3 fix nodes),
the process engine does not use late service binding load balancing, i.e., services
are hard-coded into the process definitions much like in a .NET application. In
a second setting (denoted as 20 Nodes), late binding and load balancing are
available and the complete cluster of service providers is used.

Figure 4.2 illustrate first results with varying numbers of concurrent pro-
cesses. In each experiment, we started a number (from 200 to 10,000) of processes
at the start time and measured the total time to work off all process instances.
This time divided by the number of processes approximates the mean overhead
of process navigation for a single process instance. With a centralized process
engine, there is no big difference whether late service binding and load balancing
are turned on or off (upper two graphs in the plot). The main reason for this
behavior is the fact that the central engine is not able to work off processes fast
enough and to route them to the service providers. As a result, most processes
are ”endlessly” delayed in the engine’s internal queue for navigation (although
more than 10 threads were concurrently handling entries in the queue). CPU
monitoring of the involved nodes exhibited that the coordinator node was fully
loaded (CPU load at 100%) while the nodes of the service providers were idle
over long phases of the run.

Decentralized process management, on the other hand, significantly improves
process throughput. Even more interestingly, average navigation costs remain
constant over the entire range of the number of concurrent process instances.
With late binding and load balancing enabled, distributed process management
always leads to navigation costs of around 50 ms per process regardless of the
number of concurrent processes (from 200 up to 10,000). Without late binding
and load balancing, our distributed approach also suffers from extensively long
queues at the three service providers utilized by the process (with our approach

System Scale

0

50

100

150

200

250

300

350

400

450

500

0 2000 4000 6000 8000 10000 12000

number of concurrent processes

av
er

ag
e

ti
m

e
(m

s)

Central (20 Nodes) Distributed (20 nodes)

Central (3 fix nodes) Distributed (3 fix nodes)

Fig. 4. Overall Process Navigation Time

in OSIRIS, they have to execute all navigation steps). But in contrast to the cen-
tralized approach, these three service providers are able to work off the process
instance much faster than the central coordinator.

Based on these first experiments, we conclude that process navigation is
much cheaper in a distributed environment and that a distributed process man-
agement system scales much better to larger workloads than a central coordina-
tor. However, the advantage of decentralized process execution only pays off in
combination with late binding and load balancing of service invocations. In or-
der to further investigate the different performance characteristics of centralized
and decentralized process execution, we are currently defining a benchmark for
process management system.

5 Related Work

An important feature of the Osiris system is that process execution takes place
in a peer-to-peer way without involving a centralized component. This is in sharp
contrast to state-of-the-art process support system like MQSeries Workflow [13],
BizTalk [12], etc. Although these systems allow process instances to be shipped
between different distributed process engines, services within processes are never-
theless invoked from one single engine at a time in a request/response style. Yet,
the peer-to-peer execution of Osiris requires that a middleware layer is installed
on every participating component resp. service provider. This is very similar to
frameworks like .NET [14] or CORBA [3]. However, the local middleware layers
within these frameworks only support the invocation of single services without
the possibility of combining services to higher level applications.

One crucial requirement for the peer-to-peer execution is that meta infor-
mation has to be distributed between the local middleware layers with dedi-

cated freshness guarantees. Pure peer–to–peer file sharing approaches like Fast-
Track [6] or Gnutella [9] use (optimized) flooding algorithms to distribute meta
data within the complete system. Osiris, in contrast, applies publish/subscribe
techniques. Essentially, this allows for a fine-grained treatment of different meta
data and to apply individual freshness guarantees.

Self-adaptability to a dynamically changing environment is another core as-
pect of the Osiris system. Essentially, this means that prior to each service
invocation, a decision is needed to determine the provider of an actual service in-
vocation. Several process management systems use publish/subscribe techniques
for this purpose (Dayal et al. [4] provide a detailed overview of these systems).
However, conventional implementations of publish/subscribe techniques either
require a centralized publish/subscribe broker or use broadcast technologies.
In contrast, Osiris uses neither of them. This is possible since each local hy-
perdatabase layer is equipped with a publish/subscribe broker that is able to
correctly handle local events and to route service invocations. While service dis-
covery is shielded in Osiris by the clever replication of meta information, other
systems like eFlow [2] or CrossFlow [10] have to explicitly provide support for
service discovery. In terms of self-adaptability, Osiris reacts on changes of the
overall configuration (e.g., new service providers) by implicit feedback loops [23].
In addition, following the idea of service grids [7], active changes of the over-
all configuration are also possible by the installation of new service instances.
In medical information systems, even instances of long-running patient treat-
ment processes have to be continuously migrated to the most recent process
description so as to provide up-to-date treatment knowledge. Therefore, systems
like ADEPTflex [15] have to deal with instance evolution. Such mechanisms are
however orthogonal to Osiris and could be seamlessly integrated to additionally
enable this kind of dynamic changes.

6 Conclusions and Future Work

In order to provide an infrastructure for processes execution that is, at the same
time, flexible, highly scalable, and that is able to dynamically adapt to changing
environments, Osiris combines several concepts. First, this includes support for
the discovery and invocation of web services by using established protocols like
SOAP and WSDL. Second, several service calls can be combined to processes.
To this end, Osiris is extended by O’Grape, a graphical modeling tool for pro-
cesses. Moreover, Osiris provides dedicated transactional execution guarantetes
for process instances. Third, flexibility and dynamic adaptation is realized by
supporting late binding strategies for service invocations. This allows to dynam-
ically chose among the available service providers and to apply sophisticated
load balancing techniques. Finally, by applying clever replication algorithms for
meta data, Osiris supports executions of process instances in a peer-to-peer
style. Due to this peer-to-peer execution, a centralized process engine is avoided.
As a consequence, Osiris is optimized for achieving a high degree of scalability,
both in terms of the number of process instances in the system an in terms of

the number of service providers. First evaluations presented in this paper have
shown promising results.

In order to extend these first performance evaluations, we have recently
started with the specification of a fair benchmark (similar to the one presented in
[8]) that allows to compare the decentralized Osiris prototype with a rather con-
ventional centralized process engine. Such a possible benchmark setup consists
of large number of cluster nodes acting as service providers (to this end, the 128
node Xibalba cluster of ETH Zürich will be exploited). These providers offer a
different set of services. In here, it is an important task to find a balance between
services that are location-dependent (i.e., that are only available with dedicated
providers) or location independent services which can be installed at any node in
case of a bottleneck. Hence, a benchmark application should be a well-balanced
mix of data-centric services accessing, for instance, database repositories and
computationally intensive services. The latter are usually location independent
and can be replicated on demand. In addition to basic benchmark specifications
like numbers and types of processes, this will also contain a specification on
the fluctuation and dynamic behavior of available service providers in the over-
all system. Evaluations based on this benchmark are performed within a joint
project –together with the IBM labs– that has recently been settled.

Finally, in order to provide a truly peer-to-peer execution even in the pres-
ence of services with a large number of conflicts, the current global concurrency
control service will be replaced by a distributed implementation. Although con-
currency control is a problem that requires a global solution, we have started
to investigate a decentralized implementation that replaces synchronization at a
global component with communication between the individual HDB layers [11].

Acknowledgement

We thank Frank Leymann for constructive comments and many stimulating
discussions.

References

1. Ariba, IBM, and Microsoft. UDDI Technical White Paper. http://www.uddi.org.
2. F. Casati, S. Ilnicki, L. Jin, V. Krishnamoorthy, and M. Shan. Adaptive and

Dynamic Service Composition in eFlow. In Proc. Conf. on Advanced Information
Systems Engineering, Stockholm, 2000.

3. CORBA – Common Object Request Broker Architecture. http://www.omg.org/.
4. U. Dayal, M. Hsu, and R. Ladin. Business process coordination: State of the art,

trends, and open issues. In Proceedings of 27th International Conference on Very
Large Data Bases, Roma, Italy, September 2001.

5. M. Schmid F. Leymann, D. Roller. Web services and business process management.
IBM Systems Journal, 41(2):198–211, 2002.

6. FastTrack – P2P Technology. http://www.fasttrack.nu.
7. I. Foster, C. Kesselmann, J. Nick, and S. Tuecke. The Physiology of the Grid:

An Open Grid Services Architecture for Distributed Systems Integration. http:

//www.gridforum.org/ogsi-wg/.

8. M. Gillmann, R. Mindermann, and G. Weikum. Benchmarking and configuration
of workflow management systems. In Cooperative Information Systems, 7th Inter-
national Conference, CoopIS 2000, Eilat, Israel, September 6-8, 2000, Proceedings,
pages 186–197, 2000.

9. Gnutella RFC. http://rfc-gnutella.sourceforge.net.
10. P. Grefen, K. Aberer, H. Ludwig, and Y. Hoffner. CrossFlow: Cross–Organizational

Workflow Management for Service Outsourcing in Dynamic Virtual Enterprises.
IEEE Data Engineering Bulletin, 24:52–57, 2001.

11. K. Haller and H. Schuldt. Consistent Process Execution in Peer-to-Peer Infor-
mation Systems. In Proceedings of the 15th Conference on Advanced Information
Systems Engineering (CAiSE 2003), pages 289–307, Klagenfurt/Velden, Austria,
2003. Springer LNCS, Vol. 2681.

12. B. Metha, M. Levy, G. Meredith, T. Andrews, B. Beckman, J. Klein, and A. Mital.
Biztalk Server 2000 Business Process Orchestration. In IEEE Data Engineering
Bulletin 24(1), 2001.

13. IBM MQSeries Workflow. http://www.ibm.com/software/ts/mqseries/

workflow/.
14. Microsoft .NET. http://www.microsoft.com/net/.
15. M. Reichert and P. Dadam. ADEPTflex — Supporting Dynamic Changes of

Workflows without Losing Control. Journal of Intelligent Information Systems,
10(2):93–129, March 1998.

16. H.-J. Schek, K. Böhm, T. Grabs, U. Röhm, H. Schuldt, and R. Weber. Hyper-
databases. In Proceedings of the 1st International Conference on Web Information
Systems Engineering (WISE’00), pages 14–23, Hong Kong, China, June 2000.

17. H.-J. Schek, H. Schuldt, C. Schuler, and R. Weber. Infrastructure for information
spaces. In Proceedings of Advances in Databases and Information Systems, 6th East
European Conference, ADBIS 2002, volume 2435 of Lecture Notes in Computer
Science, pages 23–36, Bratislava, Slovakia, September 2002. Springer.

18. H.-J. Schek, H. Schuldt, and R. Weber. Hyperdatabases – Infrastructure for the
Information Space. In Proceedings of the 6th IFIP 2.6 Working Conference on
Visual Database Systems (VDB’02), Brisbane, Australia, May 2002.

19. H. Schuldt. Process Locking: A Protocol based on Ordered Shared Locks for the
Execution of Transactional Processes. In Proceedings of the 20th ACM Symposium
on Principles of Database Systems (PODS’01), pages 289–300, Santa Barbara,
California, USA, May 2001. ACM Press.

20. H. Schuldt, G. Alonso, C. Beeri, and H.-J. Schek. Atomicity and Isolation for
Transactional Processes. ACM TODS, 27(1), March 2002.

21. SOAP – Simple Object Access Protocol. http://www.w3.org/TR/SOAP/.
22. R. Weber, C. Schuler, H. Schuldt, H.-J. Schek, and P. Neukomm. WebService Com-

position with O’GRAPE and OSIRIS. In Proc. of 29rd International Conference
on Very Large Data Bases, Berlin, Germany, September 2003.

23. G. Weikum, A. Mönkeberg, C. Hasse, and P. Zabback. Self-tuning Database Tech-
nology and Information Services: from Wishful Thinking to Viable Engineering. In
PProceedings of 28th International Conference on Very Large Data Bases, pages
20–31, Hong Kong, China, August 2002.

24. G. Wiederhold, P. Wegner, and S. Ceri. Towards Megaprogramming. Communi-
cations of the ACM, 35(11):89–99, November 1992.

25. I. Wladawsky-Berger. Advancing the Internet into the Future. Talk at the Inter-
national Conference Shaping the Information Society in Europe 2002, April 2002.
http://www.ibm.com/de/entwicklung/academia/index.html.

26. WSDL – Web Service Description Language. http://www.w3.org/TR/wsdl/.

