In: Proceedings of the 6" East-European Conference on Advances in
Databases and Information Systems (ADBIS’2002), Bratislava, Slovakia,
September 2002. Lecture Notes in Computer Science, Springer-Verlag.

Infrastructure for Information Spaces

Hans-J. Schek, Heiko Schuldt, Christoph Schuler, and Roger Weber

Database Research Group, Institute of Information Systems
Swiss Federal Institute of Technology (ETH)
ETH Zentrum, CH-8092 Zurich, Switzerland
Email: {schek,schuldt,schuler,weber}@inf.ethz.ch

Abstract. In the past, we talked about single information systems. In
the future, we expect an ever increasing number of information systems
and data sources, reaching from traditional databases and large docu-
ment collections, information sources contained in web pages, down to
information systems in mobile devices as they will occur in a perva-
sive computing environment. Therefore not only the immense amount of
information demands new thoughts but also the number of different in-
formation sources. Essentially, their coordination poses a great challenge
for the development of future tools that will be suitable to access, pro-
cess, and maintain information. We talk about the continuous, “infinite”
information, shortly called the “information space”. Information in this
space is distributed, heterogeneous and undergoes continuous changes.
So, the infrastructure for information spaces must provide convenient
tools for accessing information, for developing applications for analyz-
ing, mining, classifying, and processing information, and for transactional
processes that ensure consistent propagation of information changes and
simultaneous invocations of several (web) services within a transactional
workflow. As far as possible, the infrastructure should avoid global com-
ponents. Rather, a peer-to-peer decentralized coordination middleware
must be provided that has some self-configuration and adaptation fea-
tures. In this paper we will elaborate some of the aspects related to
process-based coordination within the information space and report on
research from our hyperdatabase research framework and from experi-
ences in ETHWorld, an ETH wide project that will establish the ETH
information space. Nevertheless, this paper is rather visionary and is
intended to stimulate new research in this wide area.

1 Introduction

Until recently, information processing was dominated by single, well-delimited
albeit possibly distributed information systems. In the future, we see a strong re-
inforcement of the current trend from these single information systems towards
an ever increasing number of information systems and data sources, reaching
from traditional databases and large document collections, information sources
contained in web pages, down to information systems in mobile devices and em-
bedded information in mobile “smart” objects as they will occur in a pervasive

computing environment. As a consequence of this development, the amount of
stored information is exploding. However, not only the immense amount of in-
formation demands new thoughts but also the number of different information
sources and their coordination poses a great challenge for the development of
future tools that will be suitable to access, process, and maintain information.
The reason being is that information will not be static but rather continuously
updated, extended, processed and/or refined. We talk about the continuous, “in-
finite” information, shortly called the “information space”. Information in this

space is distributed, heterogeneous and undergoes continuous changes.

For all these reasons, the infrastructure for information spaces must provide
convenient tools for accessing information via sophisticated search facilities and
for combining or integrating search results from different sources (1), for devel-
oping applications for analyzing, mining, classifying and processing information
(2), and for transactional processes that ensure consistent propagation of infor-
mation changes and simultaneous invocations of several (web) services within a
transactional workflow (3). The latter requirement is needed in order to auto-
matically keep track of dependencies within the information space. Dependencies
might exist when data is replicated at several sources or when derived data, e.g.,
in the form of sophisticated index structures, has to be maintained. As far as pos-
sible the infrastructure should avoid global components and thus also potential
bottlenecks. Rather, a peer-to-peer decentralized coordination middleware must
be provided that has some self-configuration and adaptation features to various
applications and their load characteristics (4). This urgent requirement stems
from the fact that the information space is not at all static but rather might
change its character over time. Hence, an infrastructure that supports aspects
like a high degree of flexibility and self-configuration can dynamically adapt to
changes in the environment without explicit intervention and/or tuning.

In this paper we will elaborate some of the aspects in area (3) and (4) and
report on research from our hyperdatabase research framework [16] and from ex-
periences in ETHWorld [417], an ETH wide project that will establish the ETH
virtual campus, a large-scale information space. In particular, we will present
the prototype system OSIRIS (Open Service Infrastructure for Reliable and
Integrated process Support) and we will show how the advanced concepts iden-
tified for the management and organization of large-scale information spaces
are realized in a peer-to-peer environment and by applying sophisticated pub-
lish/subscribe techniques. Nevertheless, this paper is rather visionary and is
intended to stimulate new research in this wide area.

The remainder of this paper is organized as follows: In Section 2} we introduce
the notion of information space and highlight the problems associated with the
management of data and services out of which the information space is built.
Moreover, we discuss the basic foundations and prerequisites of the architecture
we propose for managing large-scale information spaces. In Section [3] we present
OSIRIS, our hyperdatabase prototype system in detail, and we introduce the
ETHWorld project in which OSIRIS is currently being used. Section [4] discusses
related work and Section [l concludes.

2 Organizing and Maintaining Information Spaces:
Problems & Challenges

In this section, we introduce the notion of information space and discuss the
challenges for an infrastructure for information space maintenance and manage-
ment and show how such an infrastructure can be implemented.

2.1 Information Spaces

Information spaces are collections of semantically related data and services. We
differentiate between three abstractions of information spaces: Firstly, the global
information space which comprises the universe of all documents and services
that can be accessed, mainly via the Internet but also from other sources like
databases, etc. Secondly, community information spaces (or, synonymously, in-
tranet information spaces) which are defined by the data and services of a closed,
coherent part of the global information space. Thirdly, personal information
spaces which are individual views on a community information space tailored to
the needs of a user in his/her current context.

Usually, the set of documents, data, and services of an information space
is distributed and heterogeneous. In addition, information spaces are dynamic.
This means that updates and deletions of data and documents as well as the new
generation of documents have to be considered. To this end, the peers hosting
information provide appropriate services by which these operations are encapsu-
lated and made available to the users. Since documents within the information
space are usually not independent, the local invocation of such services has
several side-effects and therefore also affects other documents without the user
being aware of these dependencies. Such dependencies occur, e.g. when data is
replicated and indexed via search engines within the information space or when
certain documents are derived from others. The task of information space main-
tenance is to keep track of these dependencies and to automatically re-establish
consistency within the information space whenever necessary. A mayor difference
between the global information space and community information spaces is that
the latter are manageable in the sense that all existing dependencies are known
such that they can be tracked. For this reason, we focus on the management
of community information spaces; however, the basic mechanisms we propose
for information space maintenance can also be applied to the global information
space.

An example of a community information space is ETHWorld, the virtual
campus of ETH that we will describe in more detail below. As a further and
more general example for a community information space, consider the informa-
tion space of a large-scale international company. The documents, out of which
the company’s information space is built, are product descriptions and technical
documentation in some proprietary formats stored in file systems, product cat-
alogs and inventory control data residing in databases, information within the
company’s intranet and on some information available over the Internet, as well

as information stored in e-mail archives, etc. In addition, information is repli-
cated at several places, and local caches exist, e.g., to support mobile devices.
However, information may be added, changed, deleted by different individuals
at different subsidiaries and no global control on the consistency of the overall
community information space is possible. For instance, the update of some prod-
uct description in a product database must be propagated to the replicas of all
subsidiaries as well as to the information on the company web server.

Obviously, such dependencies within the information space have to be tracked
and consistency between original and replicated and/or derived data has to be
guaranteed. Therefore, the infrastructure of the information space has to support
the execution of coordination processes. These are applications which are defined
on top of the existing services, i.e., which use these services as building blocks.
The goal of these coordination processes is to free the users of the information
space from dealing with dependencies. Rather, appropriate processes have to be
executed automatically after services are invoked so as to maintain the overall
information space. The prerequisite for this is that i.) the necessary processes are
properly defined and ii.) they are linked to the appropriate event necessitating
coordination efforts. In particular, the latter requirement demands that service
invocations can be monitored. Such services which seamlessly support the task
of information space maintenance will be called cooperative services. Conversely,
non-cooperative services are those that do not allow for automating coordination
processes. Consequently, a basic requirement for sophisticated information space
maintenance and management is that all services having side-effects within the
information space are cooperative ones. Processes combining and virtually inte-
grating single services can themselves be considered as high-level services within
the information space.

2.2 Infrastructure for Information Spaces: Hyperdatabases

How must a proper infrastructure for information spaces look like? Clearly, we
may think of a monolithic database that stores all information and that pro-
vides all the necessary services for all clients. However, this would not match
the requirements for information spaces, mainly for two reasons. First, informa-
tion is distributed by definition. It would not be feasible to force all information
providers to store their data at a single place. Second, a monolithic system would
not scale to the increasing demands of an information space. Recent advances in
networking, storage, and computing power demonstrate that we are able to com-
municate and store vast amounts of data, but a single machine’s power cannot
catch up with the increased demands of larger data sets and larger communica-
tion rates. A useful metric for the rate of technological changes is the average
period during which speed or capacity doubles or halves in price. For storage
and networking, this period is around 12 and 9 months, respectively. The one
for computing power lies at around 18 months. Obviously, computing power is
falling behind. Consequently, a monolithic database solution for an information
space is not appropriate, but we still want its benefits, yet at a higher level of
abstraction. As a developer of such an information space, we want something

Hyperdatabase Layer
Network Layer

Component
— Services
— Data

Fig. 1. The Hyperdatabase (HDB) is a Layer on top of Networking

similar to data independence but for services. We want transactional guaran-
tees but for processes (workflows) over distributed components using existing
services. We want recovery and fault tolerance but at the process level. In a
nutshell, we would like to have a database over components and services, and a
database over databases: a Hyperdatabase (HDB) [T6/17].

Essentially, organizing an information space means providing a coherent, in-
tegrated, and consistent view on a vast amount of information that is produced,
stored, and even updated by distributed components within a networked envi-
ronment. Due to the physical distribution of information sources and services,
a core functionality of an HDB for the information space is coordination. This
means that the HDB has to keep track of changes, to continuously propagate
these changes, and to derive and update particular views of the overall (com-
munity) information space. As a consequence, HDB functionality is distributed
over the participating components and located as additional layer on top of the
network layer (see Figure. Following the analogy of transactional processes be-
ing the HDB abstraction of database transactions, a HDB as coordinator has to
run such transactional processes and to guarantee their correct termination. In
addition, the HDB offers a simple way to add and administer specialized compo-
nents (cf. Figure . The services provided by these components can be combined
to form application-aware processes with specific execution guarantees (recov-
ery, exception handling, alternative executions, consistency, concurrency control,
etc.). Commonly, such processes are triggered by events like insertion, update,
or connect/disconnect. Computationally expensive tasks may easily be scaled
out to a cluster of workstations (computational services).

Appljcatio

—bpecialized Components&

E== o=

Hyperdatabase Infrastructure

Processes (consistency)

Fig. 2. Architecture of a Community Information Space

The traditional approach to implementing systems providing functionality
similar to the functionality required from an HDB consists of decentralized stor-
age and service components and a centralized control component (coordinator,
workflow or process engine). When enriching such a process engine with transac-
tional semantics (e.g., [BII2I18]), the result will be a system that provides all the
required execution guarantees and thus will seamlessly support the task of infor-
mation space maintenance. However, the central control component disallows for
scaling the system to the demands and sizes of an information space as all steps
of all processes are routed through this (bottleneck) component. As insinuated
above, computational power does not advance as quickly as storage and net-
working technologies. Consequently, the maximum number of clients, processes,
and information providers will be limited by the computational capabilities of
the central control component. Another problem arises from the lack of resource
management. Computational expensive processes demand for an infrastructure
as provided by grids. A grid infrastructure pools complex tasks which are as-
signed to resources whenever they signal ”idle state” or ”finished last task”. But
like in workflow systems, a grid relies on a central component which assigns tasks
to is subsidiary components. On the other hand, this central component holds
enough global metadata on the tasks and resources to ensure an optimal assign-
ment of tasks to resources and achieve a maximum throughput of tasks per time
unit. But still, communication mainly incurs between the central component and
the decentralized resources.

Peer-to-peer systems have recently attracted large interest from researches,
companies and Internet users. The first successful application of peer-to-peer
systems, file sharing, demonstrated the potential of an entirely decentralized ar-
chitecture. Protocols like the ones of Gnutella [6] or FastTrack [5] require no

central control or repository component but still provide clients with sufficiently
accurate information about the state of their specific information space. More-
over, since communication takes place without any central component involved,
peer-to-peer systems easily scale up to any size. Clearly, peer-to-peer communi-
cation is a demand for an HDB that must scale to the sizes of large information
spaces. However, unlike in file sharing applications, an HDB requires a more or
less consistent, complete, and accurate view of the overall (community) infor-
mation space. While clients of a file sharing system will tolerate missing entries
in their results, this clearly is not the case for applications and processes in the
information space for which overall consistency is of primary concern.

Peer-to-peer communication enables unlimited scalability, but to ensure cor-
rectness and completeness, an HDB must rely on accurate global metadata. But
peers should not have to access global metadata on a centralized component
whenever they want to perform an action. Rather, the peers should be provided
with replicas of the portion of global metadata they need to fulfill their tasks.
Clearly, this demands for a sophisticated replication scheme within the HDB.
Although replication appears to be expensive at first glance, the characteristics
of an information space and recent advances in networking technologies enable
such a solution. For instance, if a peer must invoke a service s, it must know
which providers of s currently exist. Hence, the peer is given a replica of the list
of providers of s from the global metadata. In particular, we assume that the
number of processes to be executed and therefore the number of service invoca-
tions considerably exceeds the number of changes of global metadata such that
metadata replication pays off. In addition, the freshness of replicated data may
in certain cases be relaxed. For instance, a peer can live with a slightly outdated
list as long as it can find at least one service provider.

Summarizing the previous discussion, an implementation of an HDB should
encompass the following five essential concepts (in brackets, we have listed the
areas from which we have borrowed the respective concepts):

— Sophisticated process management enriched by execution guarantees (trans-
actional workflow or process management).

— Resource management to enable optimal execution of computational expen-
sive tasks (grid computing).

— Peer-to-peer communication at the process level. No central component shall
be involved in the navigation of processes or routing of process steps (peer-
to-peer systems).

— Accurate global metadata to provide a consistent and complete view (trans-
actional process management and grid computing).

— Decentralized replication of metadata with freshness guarantees.

3 Managing the Information Space of ETHWorld

In the following, we describe the OSIRIS system developed at the database group
of ETH. Moreover, we highlight the problems associated with maintaining the
information space of a virtual campus, an environment where the OSIRIS system
is currently being applied.

Ia)
o
=l =]
#[olAlo ii(:
v/ “,/ Subscription g
List (SL) 3
5
OOt <] 2
@*’ g o,
Ed
o == =
\-> Process Q
Repository (PR)
L TE
558
HDB Layer HDB Layer HDB Layer HDB Layer 0%
Az
Services & Data Services & Data Services & Data b Services & Data L2
g 8
== - <
] — 1 \ @
= E%j e
—=
- =

Fig. 3. The OSIRIS Architecture

3.1 The OSIRIS System

When implementing an HDB infrastructure for the management and mainte-
nance of an information space, support for the various requirements we have iden-
tified in the previous section is vital for its success. To this end, the OSIRIS sys-
tem (Open Service Infrastructure for Reliable and Integrated process Support)
[19] provides basic support for executing processes with dedicated execution
guarantees but also accounts for the inherent distribution that can be found
within the information space and the need for a highly scalable system. The
latter requirement is stemming from the fact that services may be dynamically
added to or revoked from the system such that the infrastructure should provide
certain self-adaptation features [21].

In a nutshell, OSIRIS consists of two kinds of components: i.) a small HDB
layer added to each component providing a service within the community infor-
mation space (these components will be shortly denoted as ’service providers’)
and ii.) a canonical set of basic repositories managing global metadata describing
the system configuration and the applications (processes) to be executed within
the information space (c.f. Figure |3)).

Following the core characteristics of an HDB, the OSIRIS system provides
support for process execution in a peer-to-peer style. To this end, metadata on
the processes and on the system configuration is replicated. This allows each
HDB layer of a service provider to locally drive the execution of a process, i.e.,

to invoke the next process step after a local service invocation has terminated.
As a consequence, no centralized control is involved during process execution.

The first step in providing support for the maintenance of an information
space is that the processes to be executed in the information space have to be
properly specified. This is usually done by the administrator of the community
information space and is supported in OSIRIS by the graphical workflow process
modeling tool IvyFrame [9]. After specification, the process information is stored
in a global process repository (PR). Since processes are the applications that
OSIRIS executes within the information space, the process repository can be
considered as a kind of software archive. Similarly, another global component
(subscription list, SL) manages the different service providers of the system, i.e.,
the system configuration. To this end, each service provider has to register its
service(s). Both PR and SL are then used as sources for metadata distribution.
After a provider p registers its service s; with SL, it receives in return the parts
of all process models in which s; appears. In particular, these parts contain
pairs of subsequent services (s;, si), i.e., specify the services that have to be
immediately invoked after s; has terminated. In addition, service provider p will
also receive the list of all providers offering service s; which has to be invoked
after s;. Process execution then takes place only at the level of the HDB layers
of the respective service providers: when a process is started, the first service is
invoked. After its termination, the HDB layer of the provider directly invokes
the subsequent service, thereby transferring control to its HDB layer. These
mechanisms are stepwise applied until the successful termination of a process.

Essentially, OSIRIS uses publish/subscribe techniques to execute processes.
Conceptually, each HDB layer generates (publishes) an event after the termina-
tion of a service s;. This event is converted to an invocation of the subsequent
service si of the current process and transferred to the HDB layer of a service
provider which has previously registered a service sg, i.e., has made a subscription
of the appropriate event indicating that s; has to be executed. But instead of
matching publication and subscriptions by a centralized publish/subscribe bro-
ker, this is done locally by the HDB layer. To this end, the replicated metadata
allows for a distributed and decentralized implementation of publish/subscribe
functionality. Each local HDB layer is equipped with a publish/subscribe broker
such that events can be handled locally, based on the replicas of PR and SL.
However, a question that immediately arises is how this replicas are kept con-
sistent. For this problem, again publish/subscribe techniques are applied. When
the initial subscription of a service provider for service s; is done, it is not only
registered as provider in SL. Implicitly and transparent to the provider, a second
subscription is generated by the system. This subscription declares interest on
all metadata of the system associated with this service. Initially, it corresponds
to the copy of the metadata on process models and subscribers. However, since
the second, implicit subscription is held until the provider revokes its service, it
guarantees that each change in the metadata of PR and SL relevant to this par-
ticular provider is updated. This is essentially necessary in the following cases:
i.) new processes are defined in which s; is to be executed, ii.) processes are up-

3. Implicit Subscription , = RN EIN
on Changesof SL . = ..

’
i‘(\O A/D o E 3". Implicit Subscription
3". Implicit Subscription ,' VB — \011 Changes S
7

I

0

Subscription
Ch f LR 4 \
on Changes o /, | List (SL) *
x
2. Manage o ==
Subscription O g f‘:] ’@ \m
—
Oﬁ = g i
| Repository (LR) / >, _ Process
; , Repository (PR)
] b ’ / :
\ 4. Distribute SL// 1. Subscribe ,
\ Metadata , (Register // P g
\ i HDB Layer
S ¥ Service S,) L J 5. Update SL
“=~>[HoBlayer | —----" e Service S, Metadata
4". Distribute LR 4'". Distribute PR
Metadata Services S, Metadata \ r\

—
S —d

Existing Service S;

New Service S,

Fig. 4. DIPS Metadata Replication Management

dated such that the subsequent service after s; changes or disappears, iii.) new
providers register which offer a service s; that is to be invoked after s; in some
process, or iv.) service providers revoke their service. In all cases, changes are
submitted to the central repositories and generate an event there. This event is
then, due to the second, implicit subscription, transferred to the respective HDB
layers of service providers which then update their local replica. The repeated
application of publish/subscribe techniques is termed DIPS (Doubled Implicit
Publish/Subscribe). The DIPS-based metadata replication management is de-
picted in Figure [d] The explicit subscription of a service is illustrated by solid
arcs, the implicit second subscription by dashed arcs, and the metadata distri-
bution to existing services by dotted arcs.

When the local HDB layer has to process the event indicating that a local
service s; has terminated, it has to choose one concrete service provider among
the local replica containing the list of providers having registered for the subse-
quent service sg. In order to allow for sophisticated load balancing within the
community information space, the local replicas not only contain metadata on
processes and service providers but also on the (approximated) load of the lat-
ter. Hence, the local publish/subscribe engine within the HDB layer is able to
choose the provider with the lowest current load. The distribution of metadata
on the load of a provider is again done by publish/subscribe techniques. The
initial, explicit subscription does not only generate an implicit subscription on
changes of PR and SL but also on their loads. These loads are, similarly to PR
and SL globally maintained by the load repository, LR (see Figure [4]). How-

ever, in contrast to the replicas of metadata of PR and SL that have to be kept
consistent, load information may only be an approximation of the actual load
of the provider. To this end, not each minor change of the load of a provider
is published via an appropriate event but only significant changes exceeding a
pre-defined threshold. This information is then made available to all local HDB
layers for which the appropriate provider is of interest.

In addition to the basic DIPS support for distributing process information,
system configuration (registered providers), and load information, OSIRIS pro-
vides dedicated transactional execution guarantees by following the ideas of
transactional process management [I8]. Essentially, this includes a notion of
atomicity that is more general than the traditional “all-or-nothing” semantics
and guarantees that exactly one out of several alternative executions that are
specified within a process is correctly effected.

Finally, a last task to be solved is that processes are automatically started
whenever coordination efforts are required in the information space. Each HDB
layer of a component offering services which have side-effects such that their
invocation necessitates coordination activities has to monitor the invocation of
these services. Whenever an invocation is detected, the appropriate event is
published such that the first step of the respective process needed to enforce
consistency is started (in the OSIRIS peer-to-peer way as presented above).
Yet, a basic requirement is that each of these services necessitating coordination
processes are cooperative ones.

3.2 The ETHWorld Virtual Campus

A concrete application of the OSIRIS HDB infrastructure is in the context of co-
ordinating multimedia information components in the ETHWorld project [4I17].
ETHWorld was established by ETH Ziirich to create a virtual campus where
students, assistants, professors, researches inside and outside ETH can meet,
discuss, exchange information, or work together.

A virtual campus, as an example of a large-scale community information
space, consists of various documents distributed over a large number of peers.
A particular sub-project of the ETHWorld initiative addresses multimedia sim-
ilarity search with focus on image retrieval and relevance feedback. The goal
is to allow for the interactive exploration of the community information space
of the virtual campus. To this end, we have built the ISIS system (Interactive
SImilarity Search) which provides efficient and effective search methods [8]. Its
goals are to i.) identify and build effective content descriptors for various docu-
ment types, to ii.) develop efficient search methods that allow for complex simi-
larity retrieval [20], and to iii.) build easy-to-use and powerful relevance feedback
methods to support query formulation.

Since information may be added at any place in the information space but
should be accessible by the ISIS search engine as soon as possible (without the
delay known from search engines in the Internet), ISIS requires support from
OSIRIS with respect to coordination efforts. As a concrete example, the OSIRIS
infrastructure has to monitor local insertions of new documents (e.g., in some

Find similar

Insert Image \
Image
HDB Layer M
3‘"{1 Service: Extract A % B
.&k‘ a4 Shape Features ol
} O>O0—> 1

HDB Layer: o
Observation > Process HDB Layer

Repository (PR)

Service: Service: Update
Insert Image Index
Load < ISIS

Repository (LR)

O|A[CIC|e

v | Subscription
List (SL)

N[
<
LN

N

HDB Layer

Service: Term HDB Layer

7l Extraction
Al Service: Extraction | —
A g = ofCoIorFeature

Fig. 5. OSIRIS: Distributed Process Support Infrastructure in ETHWorld

image database maintained at the ETH library) and to automatically start the
execution of a coordination process by publishing its start event. Within this
process, a well-defined sequence of steps is executed; each step corresponds to
a service invocation (e.g., for extracting color and shape features and for term
extraction from text). These features are required to finally maintain the index
allowing for sophisticated search techniques within the information space. Hence,
OSIRIS is the infrastructure that, under the cover, provides users with quality
of service guarantees for the information she/he wants to access (both in terms
of the users of ISIS being served with up-to-date data and in terms of the users
of the ETHWorld community information space which do not have to explicitly
care about coordination efforts).

In Figure |5, the OSIRIS infrastructure for the InsertDocument process is
depicted: process execution is driven by the HDB layers of the individual service
providers (outer circle) while meta information required for process execution is
collected by the global repositories (within the circle). Replication management
from the global repositories to the service providers of the outer circle is done
using DIPS techniques.

4 Related Work

The dynamic character of the information space necessitates the management of
metadata on the services of different providers. Our approach which uses a global
subscription list component allows the infrastructure to dynamically choose a
suitable service instance at process execution time. This allows the system to

execute processes in a dynamic way. Approaches dealing with similar paradigms
are eFlow [2] and CrossFlow [7]. Existing service description directories like the
UDDI Repository [I] could be used to discover external, non-cooperative service
providers. To find services matching a complex service definition, additional
effort has to be taken. The ISEE [13] system shows how e—service constraints can
be used to match suitable service instances. In medical information systems, even
instances of long-running patient treatment processes have to be continuously
updated to the most recent process template definition so as to provide up-to-
date treatment knowledge. Therefore, systems from this field have to deal with
an additional type of dynamic behavior. Running processes have to be migrated
to newer definitions. Systems like HematoWork [14] and ADEP Ty, [15] address
these aspects. Such mechanisms are however orthogonal to OSIRIS and could
be seamlessly integrated to additionally enable this kind of applications.

OSIRIS provides the guarantee of automated update propagation between
autonomous data sources (and even application systems) in the information
space. Processes are used to convert data formats and semantics from the source
to the target system. The set of services used to define such update processes
provide the functionality needed. Similar conversion flows are used to define
“XML Pipelines” [22], or “Infopipes” [11].

The OSIRIS System uses publish/subscribe techniques both for replication
management of system metadata and for process navigation. The approach pre-
sented in [I0] shows how replication management can be implemented in an
efficient way. Using this rule matching algorithm, a large amount of clients can
be served which accurate information.

5 Conclusions

In this paper, we have discussed the various requirements for an infrastructure
aiming at maintaining and managing community information spaces. The most
important task is to guarantee consistency and correctness within the informa-
tion space by executing appropriate coordination processes whenever necessary.
The core of the infrastructure is formed by a hyperdatabase (HDB) which allows
for the seamless combination of existing services into processes.

Furthermore, we have presented the OSIRIS system, an HDB implementa-
tion, which accounts for all these challenging requirements. In OSIRIS, process
execution takes place in a peer-to-peer way. OSIRIS distributes replicas of global
metadata at each peer in a way that is transparent to the users of the informa-
tion space. This is realized by applying publish/subscribe techniques for both
service providers of the system and for the global metadata repositories.

Finally, we have introduced the ETHWorld project aiming at providing the
ETH virtual campus. In here, OSIRIS is used as the underlying infrastructure
for the community information space of ETHWorld.

References

1. Ariba, IBM, and Microsoft. UDDI Technical White Paper. http://www.uddi.org.

A

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Sw©w

. F. Casati, S. Ilnicki, L. Jin, V. Krishnamoorthy, and M. Shan. Adaptive and

Dynamic Service Composition in eFlow. In Proc. Conf. on Advanced Information
Systems Engineering, Stockholm, 2000.

Q. Chen and U. Dayal. A Transactional Nested Process Management System. In
Proceedings of the 12" International Conference on Data Engineering (ICDE’96),
pages 566-573, New Orleans, Louisiana, USA, 1996.

ETHWorld — The Virtual Campus of ETH Ziirich. http://www.ethworld.ethz.ch.
FastTrack — P2P Technology. http://www.fasttrack.nu.

Gnutella RFC. http://rfc-gnutella.sourceforge.net.

P. Grefen, K. Aberer, H. Ludwig, and Y. Hoffner. CrossFlow: Cross—Organizational
Workflow Management for Service Outsourcing in Dynamic Virtual Enterprises.
IEEFE Data Engineering Bulletin, 24:52-57, 2001.

ISIS — Interactive SImilarity Search. http://www.isis.ethz.ch.

IvyTeam. IVYFRAME: Process Modeling & Simulation. http://www.ivyteam.com.

. M. Keidl, A. Kreutz, A. Kemper, and D. Kossmann. A Publish & Subscribe

Architecture for Distributed Metadata Management. In Proceedings of the 18"
International Conference on Data Engineering (ICDE’02), San Jose, USA, 2002.
R. Koster, A. Black, J. Huang, J. Walpole, and C. Pu. Infopipes for Composing
Distributed Information Flows. In Proceedings of the International Workshop on
Multimedia Middleware (M? W’01), Ottawa, Canada, October 2001.

F. Leymann. Supporting Business Transactions via Partial Backward Recovery in
Workflow Management Systems. In Proceedings of BTW’95, pages 51-70, Dresden,
Germany, March 1995. Springer Verlag.

J. Meng, S. Su, H. Lam, and A. Helal. Achieving Dynamic Inter-organizational
Workflow Management by Integrating Business Processes, Events, and Rules. In
Proceedings of the 35" Annual Hawaii International Conference on System Sci-
ences (HICSS’02), Big Island, Hawaii, USA, January 2002.

R. Miiller and E. Rahm. Rule-Based Dynamic Modification of Workflows in a
Medical Domain. In Proceedings of BTW’99, pages 429-448, Freiburg, Germany,
March 1999. Springer Verlag.

M. Reichert and P. Dadam. ADEPTg., — Supporting Dynamic Changes of
Workflows without Losing Control. Journal of Intelligent Information Systems,
10(2):93-129, March 1998.

H.-J. Schek, K. Bohm, T. Grabs, U. R6hm, H. Schuldt, and R. Weber. Hyper-
databases. In Proceedings of the 1°t International Conference on Web Information
Systems Engineering (WISE’00), pages 14-23, Hong Kong, China, June 2000.
H.-J. Schek, H. Schuldt, and R. Weber. Hyperdatabases — Infrastructure for the
Information Space. In Proceedings of the 6" IFIP 2.6 Working Conference on
Visual Database Systems (VDB’02), Brisbane, Australia, May 2002.

H. Schuldt, G. Alonso, C. Beeri, and H.-J. Schek. Atomicity and Isolation for
Transactional Processes. ACM TODS, 27(1), March 2002.

C. Schuler, H. Schuldt, and H.-J. Schek. Supporting Reliable Transactional Busi-
ness Processes by Publish/Subscribe Techniques. In Proc. of the 274 International
Workshop on Technologies for E-Services (TES’01), Rome, Italy, September 2001.
R. Weber, H.-J. Schek, and S. Blott. A Quantitative Analysis and Performance
Study for Similarity-Search Methods in High-Dimensional Spaces. In Proc. of 24"
International Conference on Very Large Data Bases, New York, USA, August 1998.
I. Wladawsky-Berger. Advancing the Internet into the Future. Talk at the Inter-
national Conference Shaping the Information Society in Furope 2002, April 2002.
http://www-5.ibm.com/de/entwicklung/academia/index.html.

XML pipeline Definition Language. http://www.w3.org/TR/xml-pipeline.

	Infrastructure for Information Spaces

